
AN INFINITE HIERARCHY OF LANGUAGE FAMILIES
RESULTING FROM N-LIMITED PROGRAMMED

GRAMMARS

Petr Zemek
Bachelor Degree Programme (3), FIT BUT

E-mail: xzemek02@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

ABSTRACT

This paper establishes an equivalence between n-limited state grammars and n-limited pro-
grammed grammars. This equivalence results into an infinite hierarchy of language families
resulting from n-limited programmed grammars, which can be considered in syntactical analy-
sis, when writing a parser based on programmed grammars.

1 INTRODUCTION

There are situations when one needs to parse some noncontext-free language, but does not want
to use parsers based on context-sensitive grammars (or even unrestricted grammars), because
they are too complex for this purpose. However, standard parsers based on context-free gram-
mars are not enough powerful. In such situations, parsers based on programmed grammars
can be considered, but if we restrict derivations to only leftmost, we loose the advantage of
generative power of these grammars [3]. The goal of this paper is to show a way how to re-
duce the effect of this restriction by studying n-limited (n-leftmost) derivations in programmed
grammars.

2 PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with the formal language theory (see [1]). For
a set Q, |Q| denotes the cardinality of Q. For an alphabet V , V ∗ represents the free monoid
generated by V under the operation of concatenation. The identity of V ∗ is denoted by ε. Set
V + = V ∗−{ε} is thus the free semigroup generated by V under the operation of concatenation.

A context-free grammar (see [1]) is a quadruple, G = (N,T,P,S), where N is an alphabet of
nonterminals, T is an alphabet of terminals, V = N ∪T be the total alphabet, S ∈ N and P is
a finite set of productions of the form r : A→ x, where A ∈ N, x ∈ V ∗ and r is a label of this
rule. If r : A→ x is a rule in P, u = u1Au2 and v = u1xu2, where ui ∈ V ∗, for all 1 ≤ i ≤ 2,
then u⇒ v [r] in G, or, simply, u⇒ v. Let⇒n denote the n-fold product of⇒, where n ≥ 0.

Furthermore, let⇒∗ denote the transitive-reflexive closure of⇒. The language of G is defined
as L(G) = {w : S⇒∗ w,w ∈ T ∗}. Lab(p) denotes the label of rule p and for set of rules P,
lab(P) denotes the set of all labels of rules from P.

A state grammar (see [2]) is a sextuple, G = (N,T,W,P,S, p0), where N, T and S are de-
fined as in a context-free grammar, V = N ∪ T be the total alphabet, W is a finite set of
states, p0 ∈W is the starting state and P ⊆W ×N×W ×V + is a finite relation. An element
(p,A,q,v)∈P is called a state production (abbreviated production or rule) and is usually written
as (p,A)→ (q,v). A nonterminal A is said to be applicable under a state p if (p,A)→ (q,v) is
in P for some p,q ∈ Q and v ∈ V +. Given a state grammar G = (N,T,W,P,S, p0), let⇒ be a
relation on W ×V + defined as follows: Let p be in W and w = xAy be in V +. If this A is the
leftmost occurence of applicable nonterminal in w under p and (p,A)→ (q,v) is in P, then we
write (p,xAy)⇒ (q,xvy). For α and β in W ×V +, write α⇒∗ β if either α = β or there exists
α0, . . . ,αr such that α0 = α, αr = β, and αi⇒ αi+1 for each i. The sequence α0, . . . ,αr is called
a derivation (of length r) and is denoted by α0 ⇒ ··· ⇒ αr. The language of G is defined as
L(G) = {w : w ∈ T +,(p0,S)⇒∗ (q,w) for some q ∈W}.

A programmed grammar (see [3]) is a quadruple, G = (N,T,P,S), where N, T and S are defined
as in a context-free grammar, V = N ∪T be the total alphabet and P is a finite set of rules of
the form (r : A→ v,σ(r)), where r : A→ v, A ∈ N, v ∈ V + is a context free rule labeled by r
and σ(r) is a set of rule labels associated with this rule. After a derivation step, symbolically
denoted by ⇒, according to a rule of this form in an ordinary context-free way, in the next
step a rule labeled by a label from σ(r) has to be applied. In the standard manner, we define
⇒m, where m≥ 0,⇒+, and⇒∗. The language of G is defined as L(G) = {w : S⇒∗ w,w∈ T +}.

Let G = (NG,TG,PG,SG) be a programmed grammar and H = (NH ,TH ,WH ,PH ,SH , p0) be a state
grammar, respectively, and let n be a positive integer. An n-limited (n-leftmost) derivation (see
[2]) is a derivation α0

j(1)⇒ α1 . . .
j(r)⇒ αr such that j(i)≤ n for each i, where j(i) means that the j-th

nonterminal (from the left) is rewritten. In this case we write α0 n⇒∗ αr instead of α0⇒∗ αr
in order to indicate that it is realized by an n-limited derivation. The language generated by
G this way is defined as Ln−lim(G) = {w : SG n⇒∗ w,w ∈ T +

G }. The language generated by H
this way is defined as Ln−lim(H) = {w : w ∈ T +

H , (p0,SH) n⇒∗ (q,w) for some q ∈WH}. By
Ln−lim(SG) and Ln−lim(PG) we denote the class of all languages generated by n-limited state
and programmed grammars, respectively.

3 RESULTS

Lemma 1. For every n≥ 1, Ln−lim(SG)⊆Ln−lim(PG).

Proof. Let H = (N,T,W,P,S, p0) be an n-limited state grammar. We construct an n-limited
programmed grammar G = (N ∪{SG},T,PG,SG), where SG /∈ N is a new nonterminal and PG
is constructed by performing the following steps:

1. Enumerate all rules in P with labels [i], i ∈ {1,2, . . . , |P|}.

2. Add a new rule (r0 : SG→ S,{ri : [i] (p0,S)→ (q,v) ∈ P, q ∈W , v ∈V +}) to PG.

3. For i ∈ {1,2, . . . , |P|}:

Add a new rule to PG of the form (ri : A→ v,σ(ri)), [i] (p,A)→ (q,v) ∈ P, σ(ri) =
{r j : [j] (q,B) → (n,u) ∈ P}, p,q,n ∈ W , A,B ∈ N, u,v ∈ V + for some positive
integers j ∈ {1,2, . . . , |P|}.

Lemma 2. For every n≥ 1, Ln−lim(PG)⊆Ln−lim(SG).

Proof. Let G = (N,T,P,S) be an n-limited programmed grammar. We construct an n-limited
state grammar H = (N ∪SH ,T,W,PH ,SH ,〈ρ〉), where SH /∈ N is a new nonterminal, ρ is a new
symbol and PH and W are constructed by performing the following steps:

1. For each (r : S→ v,σ(r))∈P, r ∈ lab(P), v∈V +, σ(r)⊆ lab(P), add (〈ρ〉,SH)→ (〈r〉,S)
to PH , where 〈ρ〉 is a new state in W .

2. For each (r : A→ v,σ(r)) ∈ P, r ∈ lab(P), A ∈ N, v ∈V +, σ(r)⊆ lab(P):

If σ(r) = /0, then add (〈r〉,A)→ (〈φ〉,v) to PH , where 〈r〉 and 〈φ〉 are new states in
W . Otherwise, for each s ∈ σ(r) add (〈r〉,A)→ (〈s〉,v) to PH , where 〈r〉 and 〈s〉 are
new states in W .

Theorem 1. For every n≥ 1, Ln−lim(PG) = Ln−lim(SG).

Proof. The result directly follows from Lemmas 1 and 2.

Theorem 2. For every n≥ 1, Ln−lim(PG)⊂L(n+1)−lim(PG).

Proof. Recall that Ln−lim(SG)⊂L(n+1)−lim(SG) (see [2]) and Ln−lim(PG) = Ln−lim(SG) (see
Theorem 1) for every n≥ 1. Thus, Theorem 2 holds.

4 CONCLUSION

In this paper an equivalence between n-limited state grammars and n-limited programmed gram-
mars was established. Rigorous proofs were omitted due to limited space, so only constructions
were given. This equivalence results into an infinite hierarchy of language families resulting
from n-limited programmed grammars. One can use this result when writing a parser for some
noncontext-free language based on programmed grammars which uses only n-leftmost deriva-
tions, so it can be more effecient than using universal (unrestricted) derivations.

REFERENCES

[1] Alexander Meduna, Automata and Languages: Theory and Applications, Springer, London,
2000. ISBN 1-85233-074-0.

[2] Takumi Kasai, An hierarchy between context-free and context-sensitive languages, Journal
of Computer and System Sciences, 1970.

[3] Jürgen Dassow and Gheorghe Păun, Regulated Rewriting in Formal Language Theory,
Springer, New York, 1989, ISBN 38751-414-7.

